

 1 / 31

GVAF (Germline variation annotation & filtering)

2018.02.12

Introduction

GVAF (called Germline Variant Annotation Filtering) is command-line software that is
designed to provide a flexible filtering function and annotation for TXT files (called annotated
files) consisting of arbitrary fields such as the Annovar output-like file format to explore
genetic variants.

Overview

Figure 1. The architecture of GVAF.

Figure 1 shows the software architecture of GVAF that provides the various functions for genetic
variant exploration. GVAF is composed of 5 modules and each module provides the different function
for exploring the variants. You can execute GVAF program using user Interface (UI) tool with the
options. UI can parse the user-supplied options and pass them to the configurator module of GVAF.
According to the user-supplied option, the configurator module in GVAF manages the environmental
settings and generates the execution flow. The remaining modules (e.g., preprocessing, annotation,
filtering, format) provide the function to explore the interesting or relevant variants. GVAF can perform
the following main functions using several modules for handling genetic variants on the annotated
files:

 2 / 31

 Preprocessing: This function is used to convert from the VCF derived genotype data to user-
friendly genotype-related fields.

 Annotation: This function is used to add the fields including further information about the
variant.

 Filtering: This function is used to filter out variants using simple but flexible filtering expression.

 Format: This function is used to generate customized output files.

In additional, GVAF provides the function to handle the input files such as ANNOVAR-like output file
including the field names with the null values. The field names with the null values in the input files
are assigned in sequence using the letter (extra1~n).

GVAF can execute several modules together at the same time. Five modules (i.e., preprocessing,
annotation, filtering, format) in GVAF for exploring genetic variants can be executed in sequential
order according to each module priority. We prioritized each module in order of preprocessing,
annotation, filtering, and format (see figure 1). The execution flow is generated based on the
predefined priority and each module belong to the execution flow uses the result files of the previously
executed module as input files except in initial module.

Figure 2. The execution step using annotation and filtering modules.

We demonstrate the execution step of GVAF when you want to execute the annotation module and
the filtering module together in figure 2. Using UI, you can pass a command including the options
related to annotation and filtering module and the input files into GVAF. The final result files can be
generated according to the following procedure.

0. Create the execution flow according to the predefined module priority from a user-supplied
command by the configurator module.

1. Execute the annotation module with the high priority using the input files.

2. Return the annotated result files to the configurator module.

3. Execute the filtering module using the result files of the annotation module as input and sent
EXIT signal.
- EXIT signal: This signal means to shutdown GVAF.

4. Generate the final result files and shutdown GVAF.

 3 / 31

All result files of executed module are stored in individual directory named each module name of
output directory and you can also get the intermediate result files of each module.

Getting started with GVAF

System requirements

Java version 1.7 (or higher)

Installing GVAF (for Linux system)

User Interface (UI)

We provide two user interface tools (written Bash).

 4 / 31

 gvaf: The script is used to execute the GVAF using the main functions (e.g., annotation, filtering,
extracting specific fields etc.).

 gvaf_creation_annotation_file: This script generates a file that includes a specific column with
no duplication for executing the annotation step on GVAF.

gvaf

The gvaf tool can be used with the command-line options and the options can be classified
to five categories (i.e., basic, preprocessing, annotation, filtering, format).

Options

You can find the usage of the option in each category in Table 1. You can get a detailed description

of each categories in page 6-16. The options marked with “[]” will automatically be set to default

values or null value unless otherwise specified, and you can skip these options optionally.

Categories Option Description

Basic

-input <files or directory>

This option is used to set the input files using
the file or directory paths.

➢ e.g., you want to set a single file
(named test1.txt) as input.
-input test1.txt

➢ e.g., you want to set multiple files
using directories (named text_dir1,
text2_dir2) as input.
-input “text_dir1, text_dir2”

[-outputdir] <directory>

This option is used to set output directory for
storing the result files. If output directory
configurated by the user does not exist,
GVAF automatically creates a new directory.
If you do not set this option, GVAF
automatically creates a new directory
(named “GVAF_reuslt_<date>”) by default,
and sets it as output directory path.

➢ e.g., you want to store the result files
at /home/user/gvaf_result
-outputdir /home/user/gvaf_result

[-threads] <number>

This option is used to set the number of
threads for parallel work. If you do not set this
option, GVAF automatically sets 1 by default
(i.e., non-parallel work).

➢ e.g., you want to execute parallel
tasks using 5 threads.
-threads 5

Preprocessing
-genotype_format_format
<field name>

This option is used to set the field including
the VCF format-derived genotype data
format.

➢ e.g., you want to annotate genotype-

 5 / 31

related fields by referencing the
value of field (named extra4) that is
the VCF format-derived genotype
format.
-genotype_format_format extra4

-genotype_field <field
name>

This option is used to set the field including
the VCF format-derived genotype data.

➢ e.g., you want to annotate genotype-
related fields by referencing the
value of field (named extra5) that is
the VCF format-derived genotype
data.
-genotype_format_format extra5

Annotation

-annotate
<annotation expression>

This option is used to specify the annotation
expression.

➢ e.g., you want to add a certain line of
an annotation file if the value of
Gene from input files is equal to the
value of OMIM.Gene field.
-annotate “Gene==OMIM.Gene”

-annotation_file
<annotation file path or
“omim”>

This option is used to set an annotation file
including the lines consisting of annotated
fields. You can use OMIM gene annotation
file without an annotation file using “omim”.

➢ e.g., you want to execute OMIM
gene annotation.
-annotate_file “omim”

➢ e.g., you want to execute
customized annotation using a file
(annotation_file.txt)
-annotate_file annotation_file.txt

[-delimiter <character>]

This option is used to specify the delimiter for
the input file field specified in the annotation
expression including the multiple values.

➢ e.g., you want to extract a single
value from the input file field that is
multiple valued field with “value1,
value2, …”.
-delimiter “,”

Filtering

-FilteringRule_File
<filteringrule file>

This option is used to set a file path (called
FilteringRule file) specified in the filtering
rule. You can find how to generate a
FilteringRule file (see page 7).

➢ e.g., you want to set FilteringRule file
(named FR.txt)
-FilteringRule_File FilteringRule.txt

-FieldDefinition_File
<fielddefinition file>

This option is used to set a file path (called
FieldDefinition file) including the information
of the fields defined in a FilteringRule file.
You can find a detailed description of
FieldDefinition file (see page 14).

➢ e.g., you want to FieldDefinition file

 6 / 31

(named FD.txt)
FieldDefinition_File FD.txt

[-ListFiltering_field
<field name>]

This option is used to set the field of the input
files or result files for applying ListFiltering.
You can find a detailed description of the
ListFiltering function (see page 15).

➢ e.g., you want to use the field
(named gene) for applying
ListFiltering.
-ListFiltering_field gene

[-ListFiltering_file
<ListFiltering file>]

This option is used to set a file (called
ListFiltering file) including a list of values for
executing ListFiltering. You can get how to
create a ListFiltering file (see page 15).

➢ e.g., you want to execute
ListFiltering using a file (named
LF.txt).
-ListFiltering_file LF.txt

[-NAStrings <strings>]

This option is used to set the strings that
represents the missing values. If each field in
the input files has a different string that
represents missing value, you can use “,”
(comma) for specifying the multiple missing
values.

➢ e.g., the input files have “NA” of
“NONE” as missing value.
-NAStrings “NA,NONE”

Format -format_file <format file>

This option is used to set a file path (called
format file) including output file format. You
can find a detailed description of format file
(see page 15).

➢ e.g., you want to set a format file
path (named format.txt)
-format_file format.txt

Table 1. The overview of available options.

Basic

To perform program, GVAF requires the input files with the output location or the number of
threads. You can set the output location and the number of threads selectively. All result files are
stored in default output location if the output location is not set. GVAF are executed in nonparallel
by default. But, GVAF supports the parallel works using the multiple-threading technique that is
used to use the resource efficiently on heterogeneous environment and reduce the execution
time. You can execute GVAF program in parallel using the number of threads. This category
includes the options related to environmental settings for running GVAF program (e.g., the
number of threads, input files, etc.).

Preprocessing

The genotype-related fields in VCF files is hard to apply the further functions such as annotation
and filtering. To solve this problem, we provide the preprocessing functions for handling the VCF

 7 / 31

derived genotype fields. This category includes the options related to the preprocessing function
that is used to converts from the VCF format-derived genotype fields to the genotype-related
fields (see table 2).

Table 2. Conversion of genotype-related fields by GVAF.

Table 2 shows a detailed description of the genotype-related fields. Using the options in this
category, you can automatically annotate the genotype-related fields (i.e., het/hom, totalread,
refread, altread, genotypequality) based on VCF format-derived genotype fields of the input files.

Annotation

This category includes the options related to the annotation function. You can add the additional
fields of an annotation file into the input files using the annotation function. GVAF provides the
OMIM gene annotation file by default, and any annotation file can be used. You can execute the
customized annotation task using the simple annotation expressions. But, the value of annotation
file fields specified in the annotation expression are not allowed with duplicated value.
Furthermore, we provide the user interface tool (named gvaf_creation_annotation_file) to
generate an annotation file (see page 30).

 Annotation expression

Example:

➢ Field names of Input file: “Chr, Start, End, Ref, Alt, Gene.refGene”

➢ Field names of an annotation file: “OMIM.Gene, disease name, alternative titles”

Using this annotation expression, you can annotate each variant form the input files if the
value of Gene.refGene field is equal to the value of OMIM.Gene field of a certain line from an
annotation file, by attaching all fields from an annotation file at the end of the line of the
corresponding variant from the input files.

Printed field name Description

het/hom
het/hom indicates heterozygous or homozygous based on GT (i.e.,
Genotype)

Totalread
totalread indicates total read based on AD (i.e., Allelic depths for the
ref and alt alleles in the order listed)

Refread
refread indicates reference read based on AD (i.e., Allelic depths for
the ref and alt alleles in the order listed)

Altread
altread indicates alternative read based on DP (i.e., Approximate
read depth)

Genotypequality
Genotypequality indicates genotype quality based on GT (i.e.,
genotype quality)

 8 / 31

Filtering

This category includes the options related to the filtering function. You can extract the
interesting/relevance variants from the input files using the filtering function. GVAF provides a
flexible filtering function by applying the filtering rule containing the expressions consisting of the
various operators (see page 8-9) in all fields of the input file as a filtering rule without special
limitation. In addition, GVAF can process multiple filtering rules at same time and provides the
ability to apply the different input files to each filtering rule using the concept of group.

To execute the filtering module, GVAF requires two types of file: FilteringRule file (called FR file)
and FieldDefinition file (called FD file).

 FR file

This is designed to define the execution method for the filtering module and consists of three
components.

➢ BuildingPrimarykey: This is designed for the expressions with a set operator and set
to a list of input file field names as value for identifying each variant in the filtered
result files. The expressions with a set operator compare the variants between the
filtered result files by referring the value of BuildingPrimarykey. This will be
automatically set to ““Chr, Start, End, Ref, Alt” as the default value if this is not set.

➢ InputGroupAlias: This is used to define the groups designed to apply the different
input file per each filtering rule. GVAF uses the input files by “-input” option set in gvaf
tool to define the groups, and each group includes one or more files or directories.

- How to create a group

Each line specifies a group, where a group consists of multiple files or directories.
No duplicate is allowed for group names. Comma (,) is used as a delimiter
between the paths of the files or directories.

Figure 3. An example of InputGroupAlias.

Figure 3 shows an example of InputGroupAlias consisting of four groups (e.g.
group1~4) to demonstrate the definition method for the multiple groups. Group1 and
group2 are defined by inputting the directory and these groups are set to all files in
defined directories (e.g., example_dir1 or example_dir2). Group 3 and group 4 are
defined by entering the file, and the defined files (e.g., example_input1.txt and
example_input2.txt) are organized to each group.

➢ FilteringRule: This is used to define one or more filtering rules, and you can create
the filtering rules using the expressions consisting of three operator types such as
comparison operators, logical operators, and set operators.

- Comparison operators

 9 / 31

This is used to define a filtering rule at a field of the input or annotated files using
a comparison operator. GVAF currently supports three field data types (e.g., S, I
and D).

Operators Field data type Description

e S (String), I (integer), D (double) Equal to

ne S (String), I (integer), D (double) Not equal to

c S (String) Contains

nc S (String) Does not contain

lt I (integer), D (double) Less than

lte I (integer), D (double) Less than or equal to

gt I (integer), D (double) Great than

gte I (integer), D (double) Great than or equal to

Table 3. The available comparison operations.

- Logical operators

This is used to combine the expressions for defining a filtering rule using the
logical operators using symbols such as “* and &” (AND) and “| and +” (OR). We
provide the two types of logical operators: The inner field logical operator and the
outer field logical operator.

✓ The inner field logical operator

This is used to combine the expressions applied for one field using symbols:
“&” (AND) and “|” (OR).

✓ The outer field logical operator

This is used to combine the expressions applied for multiple fields using the
symbols: “*” (AND) and “+” (OR).

The logical operators can be defined according to the type of combined
expression. We will explain detailed instructions to define the expressions with
the logical operator using some example (see page 9-10).

- Set operators

This is used to define the expression of a filtering rule for performing the additional
filtering function between the filtered result files from the multiple filtering rules
including the expressions consisting of comparison operators and logical
operators. The expressions including a set operator can be defined using two or
more filtering rules with one or more result files. The set operators can be defined
using predefined strings such as union, difference and intersection without case
sensitive and the filtering rules with the filtered result files are defined using the
alias. We will explain detailed instruction to define the expression with the set
operator using some example (see page 10-13).

The filtering rules can be defined as below.

Each line specifies a filtering rule, where a filtering rule consists of an expression, the

 10 / 31

group information, and alias. No duplicate is allowed for a filtering rule alias. The
group information applied a filtering rule is specified using “;” (semicolon) and can
define the multiple groups using “,” (comma). The filtering rules with no group
information are automatically set to a default group that contains all files established
by “-input” option of gvaf tool. The expressions are composed of the filters that can
be apply to the input files and must be defined according to the following instruction.

- How to define the expressions

✓ The expressions consisting of comparison and logical operators

This is used to define a filtering rule for the fields of the input files or annotated
result files and can be defined using comparison and logical operators without
any limitation. Using the comparison and logical operators, you can define
the expression that compares one or more values in one field or one or more
value in several fields. You can create the expressions as below.

Each expression for one field consists of three main components.

1. Field name: This is used to specify a filtered field name of the input or
annotated result files.

2. Compared value: This is used to specify the compared value for applying
a comparison operator

3. Comparison operator: This is used to specify the comparison operator
for applying filtered field.

Furthermore, you can generate an expression containing two or more
comparison operators for one field using the inner field logical operators such
as “& (AND) or | (OR)”. We prepared two examples.

This example shows an expression containing one comparison operator.
Using this expression, you can extract the lines including the value of “chr1”
in the field named “Chr” from the input or annotated result file.

This example shows an expression containing multiple comparison operators
using the inner field logical operator such as “& (AND) and | (OR)”. Using the
expression, you can extract the lines including the values of “UTR3” or
“splicing” in the field named “Func.refGene” from the input or annotated result
file.

You can also generate an expression combined with two expressions of
above examples using the outer field logical operators such as “* (AND) and
+ (OR)”. Each expression of above examples can be identified using “()”.
Using this example expression, you can extract the line including the value of
“chr1” in the field named “Chr” and the values of “UTR3” or “splicing” in the

 11 / 31

field named “Func.refGene” from the input or annotated result file.

✓ The expressions consisting of a set operator

This is used to perform the filtering function between the filtered result files of
two or more individuals by applying the set operators. You can define the
expression using the set operator and the alias of the filtering rules as below.

Each expression with a set operator consists of two main components.

1. Set operator: This is used to specify the type of set operators with “#”.
The set operator can be defined using the strings such as union,
difference and intersection without case sensitive.

2. Filtering rule alias: This is used to specify the two or more filtering rules
for applying the filtering function and can be defined using “,” (comma)
as delimiter. Each filtering rule is composed of comparison and logical
operators with the result files.

This expression produces the final result files by applying a set operator
based on the first defined filtering rule. You should define the proper filtering
rules in this expression depending on a first defined filtering rule. A first
defined filtering rule with one filtered result file can be applied using the
remaining filtering rules with one filtered result file. Otherwise, a first defined
filtering rule can be applied using the filtering rule regardless of number of the
result files. But, the remaining filtering rules with multiple filtered results must
be identical in the same original input files of a first defined filtering rule.

We prepared some examples to show the applicable scenarios.

 12 / 31

Figure 4. An example for applying a set operator between filtered result

files from the same samples.

Figure 4 shows an example of applying a set operator between the filtered
result files of same individuals. Figure 4 (a) shows an example of how to
generate a final result file when two filtering rules (i.e., S_FR1, S_FR2) have
the result files from the same input file (i.e., P1_variant.txt). Figure 4 (b) shows
an example of how to generate the final result files when two filtering rules
(i.e., M_FR1, M_FR2) have the result files from two identical input files (i.e.,
P1_variant.txt, P2_variant.txt). At this time, you must define the expression
using the filtering rules including completely identical input files.

Moreover, you can execute the filtering function using a set operator between
the filtered result files of the filtering rules using a filtered result file of a specific
person. Using this filtering function, you can fine the causative variants of
patient related to disease by comparing the genetic variants of parents or
siblings.

 13 / 31

Figure 5. An example for applying a set operator between the filtered

result files from the other samples.

Figure 5 shows an example of applying a set operation between the filtered
result file of different individuals. Figure 5 (a) shows an example of how to
generate a final result file when two filtering rules (i.e., S_FR1, S_FR3)
include one result file from the input files (i.e., P1_variant.txt, P1_variant.txt).
In Figure 5 (b), we show example of how to generate the final result files when
two filtering rules (i.e., M_FR1, S_FR3) is not equal to the number of result
files. The final result files are generated by executing the filtering function with
a set operator based on two result files (i.e., P1_variant M_FR1.txt,
P2_variant M_FR1.txt) in M_FR1 using one result file (i.e.,
P3_variant_S_FR1.txt) in S_FR3. At this time, you must define the expression
using the filtering rules with one result files when a first defined filtering rule
includes multiple input files.

We prepared an example to perform the filtering function with a set operator
by applying three or more filtering rules for advanced usage.

 14 / 31

Figure 6. An example for applying a set operator between the result

files from three or more filtering rules.

You can define the expression with a set operator and several filtering rules
depending on the result file number of a first defined filtering rule such as an
example in Figure 6. All intermediate result files are only used to perform the
filtering function and not stored to local file system. You can find the final result
files on local file system.

Furthermore, GVAF provides the multiple-valued operators for handling the fields
containing the multiple values.

- Multiple-valued operators (MOP)

✓ all: If you set “all”, the expression will be true if all field satisfy the expression.

✓ any: If you use “any”, the expression will be true if any field stratifies the
expression.

Figure 7. The expression examples using MOP.

MOP can be applied to a single field containing the multiple values in the
expression consisting of comparison and logical operators. Figure 7 shows the
expression example using MPOs such as “all” and “any”. Two expressions are
the same except for MOP in figure 7. But, the meanings of two expressions are
completely different. We assumed that field named “Func.refGene” has multiple
values. Using filtering rule defined the first expression example applying “all”, you

 15 / 31

can extract the input file lines that all values of “the field named “Func.refGene”
are UTR3” or “splicing”. Using filtering rule defined the first expression example
applying “any”, you can extract the input file lines that any values of “the field
named “Func.refGene” are UTR3” or “splicing”. The fields containing the multiple
values automatically set “any” as the default operator.

We demonstrate how to create a FR file through an example.

Figure 8. the example of a FR file.

BuildingPrimarykey, InputGroupAlias, FilteringRule and includes 7 filtering rules. Figure 8 (a)
can be skipped selectively if you want to apply default value. Otherwise, you must define
BuildingPrimarykey and InputGroupAlias as shown in figure 8 (a). Figure 8 (b) indicates two
filtering rules including the expression consisting of comparison and logical operators with no
group. Figure 8 (c) indicates the filtering rules two filtering rules including the expression
consisting of comparison and logical operators with two groups (i.e., F1, F2). Figure 8 (d)
shows three filtering rules including the expression specified in a set operator. The result files
are generated depending on the group information of each filtering rule in a FR file.

 FieldDefinition file (FD file)

A FD file is used to input the information of the field defined in the filtering rules of a FR file
and is composed of three fields.

- Name: This is used to enter the input file field name specified in a FR.

- Type: This is used to define the field data type using a character (e.g., S, I, D).

- Delimter(req): This is used to define the delimiter of the field including multiple values
using the regular expression and can be skipped for the field having a single value.

Figure 9. An example of a FD file.

 16 / 31

The figure 9 shows an example of a FD file to define the field information including the
fields defined in the filtering rules in a FR file shown in the figure 8.

GVAF provides additional function (called ListFiltering) that is applied to all filtering rule in a FR
file to identify the line containing the variants associated with a certain disease group or disease
or a gene set associated with a specific disease.

 ListFiltering

ListFiltering performs additional function on the filtered result files using a file (called a
ListFiltering file). A ListFiltering file includes the values associated with a certain disease group
or a gene set associated with a specific disease. Using the ListFiltering-related options and a
ListFiltering file, you can distinguish whether or not each line in the filtered result files has the
variant belonging to the value in a ListFiltering file. As a result, you can get two types of result
files such as a list file or a unlist file per the filter result files.

- A list file: This extracts the lines from a filtered result file with the value belonging to a
ListFiltering file.

- A unlist file: This extracts the lines from a filtered result file without the value belonging to a
ListFiltering file.

Figure 10. An example of a ListFiltering file.

The figure 10 shows the example of a ListFiltering file to define the values. Each value be
defined on one line. You can define the values as you want easily for executing ListFiltering
function. In figure10, four values are defined in a ListFiltering. Using a ListFiltering file, you
can get two result files such as list or unlist per the filtering rules in a FR file. A list file has the
variants including ACTG1, AIPL1, ALS5, ARWH1 and a unlist file without the variants including
ACTG1, AIPL1, ALS5, ARWH1.

Format

This category includes the options related to the format function that is used to change the output
file format. Using this option in this category, you can print the specific fields or change the order
of the printing fields using a format file.

 Format file

A format file is used to define the output file format using the field name of an input file. You
can generate a format file without the specific field or components using the field name easily.
A format file can be defined by inserting the field names in the input files or annotated result
file in the order of the printed fields. Also, you can change the printed field names using the
simple definition format as defined "input field name ==>modified field name".

 17 / 31

Figure 11. An example of format file.

Each line specifies the printed fields of the input or annotated files. The figure 11 shows an
example of a format file to define customized output file format. Using this format file, you can
get the result files consisting of “Chr,Start,End,Ref,Alt,Gene,Fun.refGene”.

Execution examples with gvaf

We provide some examples and dummy data to illustrate how to use gvaf for exploring the

genetic variants. We assume that the commands for applying all examples are performed

using the files and directories belonging to dummy data stored in specific directory named

“dummydata” as input on the home directory of GVAF. The dummy data with Annovar-like

output file format is used as input in all examples and consists of two directories (i.e.,

example_dir1, and example_dir2) and seven files (i.e., example_input.txt,

example_dir1_1.txt, example_dir1_2.txt, example_dir1_3.txt, example_dir2_1.txt,

example_dir2_2.txt, and example_dir2_3.txt). You can download gvaf program and dummy

data together.

Usage

gvaf -input FILE/DIRECTORY [-outputdir DIRECTORY] [-threads INTEGER] [PREPROCESIING

OPTIONS] [ANNOTATION OPTIONS] [FILTERING OPTIONS] [FORMAT OPTIONS]

An execution example using the preprocessing category

GVAF can add the genotype-related fields to input files by converting the VCF derived genotype

data using the preprocessing module. The preprocessing module can be executed by setting the

options in the preprocessing category. We describe the usage of the options in the preprocessing

category using an example.

 18 / 31

Figure 12. An execution example using preprocessing module.

Figure 12 shows the process of transforming the VCF derived genotype data to the user-friendly

genotype-related fields such as het/hom, totalread, refread, altread, genotypequality. This example

is performed using the files in dummydata as input and the options belonging to preprocessing

category by setting the field names including the VCF derived genotype-related data and VCF

derived genotype-related data format. The files in dummydata with ANNOVAR-like output file

includes two fields with VCF derived genotype-related data and VCF derived genotype-related data

format. Initially, these field names including the VCF derived genotype-related data are the null

values in input file. GVAF renames the name of fields with the null values in sequence using the

letter (extra1~n) before using as input to each module. Thus, the file name including VCF derived

genotype-related data format is renamed as extra4 and the field name including VCF derived

genotype-related data is renamed as extra5.

You can execute an example in figure 12 using the following command.

 Using one file as input

Using this command, you can set one file (named example_input.txt in dummydata directory)
as input using “-input” option. Two options in preprocessing category such as "-genotype_field"
and "-genotype_format_field" are set. The "-genotype_field" option is set by entering the field
name (i.e., extra5) including genotype-related data in input file. The "-genotype_format_field"
option is set by entering the field name (i.e., extra5) including genotype-related data format in
input file. The “-outputdir” option is set to the directory path of result, and the final result file is
stored in preprocessing directory of output location as below.

- Final result file (from one input file named example_input.txt)

preprocessing_example_input.txt

 19 / 31

 Using multiple files as input

We will only mention the description of “-input” option and the final result files. You can find the
description of the remaining options in above command. Using this command, the multiple files
belonging to example_dir1, example_dir2 in dummydata directory are used as input using “-
input” option. The example_dir1 and example_dir2 directories have six files as below.

The final result files are stored in preprocessing directory of output location as below.

- Final result file (from six input files in two directories)

preprocessing_example_dir1_1.txt, preprocessing_example_dir1_2.txt
preprocessing_example_dir1_3.txt, preprocessing_example_dir2_1.txt
preprocessing_example_dir2_2.txt, preprocessing_example_dir2_3.txt

Execution example using annotation category

GVAF can add the additional fields including information about each variant in the input files using

an annotation file based on annotation expression. The annotation module can be executed by

setting the options in the annotation category and an annotation file and annotation expression. You

can get the detail of an annotation file and annotation expression (see page 7). More specifically,

each line in input file and the lines of an annotation file with the value satisfied in annotation

expression are combined into a single line, and combined lines are stored to a result file. If the value

of input file field specified in annotation expression does not match any values of annotation file

field in annotation expression, the annotation module creates the line consisting of the line in input

file and meaningless line including the missing value (“—“), and created lines are stored to a result

file. We describe the usage of the options in the annotation category via two examples.

 20 / 31

Figure 13. The execution example of annotation module using OMIM gene annotation file.

Figure 13 shows the process of annotating additional fields to the input file based on annotation

expression using OMIM gene annotation file. OMIM gene annotation file is composed of 10 fields

such as “OMIM.Gene, disease name, etc.” and is provided by default without a specific annotation

file. Using this annotation expression, the annotation module combines the line of input file and

annotation file when the value of Gene.refGene field in input file is equal to the value of OMIM.gene

field in annotation file, and combined lines is stored to the final result file. In other cases, the

annotation module creates the line consisting of the line in input file and meaningless line including

the missing value (“—“), and created lines are stored in the final result file.

You can execute an example in figure 13 using the following command.

 Using one file as input

Using this command, you can set one file (named example_input.txt in dummydata directory)
as input using “-input” option. Two options in annotation category such as “-annotate” and “-
annotation_file” are set. The “-annotate” option is set by entering "Gene.refGene==OMIM.Gene"
as the annotation expression. The “-annotation_file” option is set by entering “omim” as an
annotation file because GVAF provides the OMIM gene annotation by default. Using “-outputdir”
option, you set result directory as output location for storing the result files. The final result file
is stored in annotation directory of output location as below.

- Final result file (from one input file named example_input.txt)

Annotated_example_input.txt

 21 / 31

 Using the multiple files as input

We will only mention the description of “-input” option and the final result files. You can find the
description of the remaining options in above command. Using this command, the multiple files
belonging to example_dir1, example_dir2 in dummydata directory are used as input using “-
input” option. The example_dir1 and example_dir2 directories have six files as below.

All annotated result files are stored in annotation directory of output location as below.

- Final result file (from six input files in two directories)

Annotated_example_dir1_1.txt, Annotated_example_dir1_2.txt
Annotated_example_dir1_3.txt, Annotated_example_dir2_1.txt
preprocessing_example_dir2_2.txt, Annotated_example_dir2_3.txt

Figure 14. An execution example of annotation module using custom gene annotation file.

Figure 14 shows the process of annotating additional fields from custom gene annotation file to the

input file based on annotation expression. We created an annotation file (named

custom_annotation.txt) to execute the annotation module using a file consisting of the arbitrary

fields as annotation file. This annotation file is stored in refdata directory of the dummydata directory.

 22 / 31

The custom gene annotation file is composed of two fields such as “CUSTOM.Gene,

CUSTOM.inheritance”. Using this annotation expression, the annotation module combines the line

of input file and annotation file when the value of Gene.refGene field in input file is equal to the

value of CUSTOM.gene field in annotation file, and combined lines is stored to the final result file.

In other cases, the annotation module creates the line consisting of the line in input file and

meaningless line including the missing value (“—“), and created lines are stored in the final result

file.

You can execute an example in figure14 using the following command.

 Using one file as input

Using this command, you can set one file (named example_input.txt in dummydata directory)
as input using “-input” option Two options in annotation category such as “-annotate” and “-
annotation_file” are set. The “-annotate” option is set by entering
"Gene.refGene==CUSTOM.Gene" as the annotation expression. The “-annotation_file” option
is set by entering the file path of custom_annotation.txt as an annotation file. Using “-outputdir”
option, you set result directory as output location for storing the result files. The final result file
is stored in annotation directory of output location as below.

- Final result file (from one input file named example_input.txt)

Annotated_example_input.txt

 Using multiple files as input

We will only mention the description of “-input” option and the final result files. You can find the
description of the remaining options in above command. Using this command, the multiple files
belonging to example_dir1, example_dir2 in dummydata directory are used as input using “-
input” option. The example_dir1 and example_dir2 directories have six files as below.

All annotated result files are stored in annotation directory of output location as below.

- Final result file (from six input files in two directories)

Annotated_example_dir1_1.txt, Annotated_example_dir1_2.txt
Annotated_example_dir1_3.txt, Annotated_example_dir2_1.txt
Annotated_example_dir2_2.txt, Annotated_example_dir2_3.txt

An execution example using filtering category

GVAF extracts the lines with the variants including the matched expressions of the filtering rules

from the input or annotated files using the filtering module. The filtering module is performed by

 23 / 31

setting the options in the filtering category and two types of files such as FilteringRule file (called a

FR file) and FieldDefinition file (called a FD file). You can find the detail of FR file (see page 7) and

FD file (see page 14). The filtering module filters each line in the input files by referring the filtering

rules in a FR file and the field information in a FD file and provides additional function called

ListFiltering function. ListFiltering can be optionally executed and is used to identify whether each

line in the filtered result files has the variants associated with a certain disease group or gene set.

You can get the information about the ListFiltering function (see page 15). We describe the usage

of the options in filtering category using two examples as below.

Figure 15. The execution example for filtering module without ListFiltering step.

The figure 15 shows the process of filtering each line of the input files containing the variant

information based on the filtering rule defined in a FR file. We created two types of files such as a

FR file (named FR.txt) and a FD (named FD.txt) for executing the filtering module. A FR file contains

three filtering rules with aliases such as base, chr1, and set_chr1_base and a FD file contains two

field information specified in the expression of the filtering rules. These files are stored in refdata

directory of the dummydata directory. Two filtering rules (called base and chr1) create the filtered

result files based on the input files by applying the expressions consisting of comparison and logical

operators. A filtering rule (called set_chr1_base) creates the filtered result files by applying the

expression consisting of a set operator between the filtered result files of base and chr1. You can

get three filtered result files per an input file.

You can execute an example in figure 15 using the following command.

 Using one file as input

Using this command, one file (named example_input.txt in dummydata directory) is used as

 24 / 31

input using “-input” option. Two options in filtering category such as “-FilteringRule_File” and

“–FieldDefinition_File” are set. The “-FilteringRule_File” option is set by entering the file path of

FR.txt as a FR file. The FieldDefinition_File” option is set by entering he file path of FD.txt as a
FD file. The result directory is set as output location for storing the result files. All filtered result
files are stored in filtering directory of output location as below.

- Final result file (from one input file named example_input.txt)

Filtered_example_input_base.txt, Filtered_example_input_chr1.txt
Filtered_example_input_set_chr1_base.txt

You can get three filtered result files because the filtered result files are generated by applying
three filtering rules in a FR file based on an input file.

 Using multiple files as input

We will only explain “-input” option and the final result files. You can get the description of the
remaining options in above command. Using this command, multiple files belonging to
example_dir1, example_dir2 in dummydata directory are used as input using “-input” option.
The example_dir1 and example_dir2 directories have six files as below.

All filtered result files are stored in filtering directory of output location as below.

- Final result file (from six input files in two directories)

You can get 18 filtered result files because the filtered result files are generated by applying
three filtering rules in a FR file based on 6 input files.

 25 / 31

Figure 16. The execution example for filtering module with ListFiltering step.

Figure 16 shows the process of performing the ListFiltering function for the filtered result files. The

ListFiltering function identifies whether each line in the filtered result files has the value belonging

to the values in a ListFiltering file by referring to the value of a certain field. We created a ListFiltering

file including 3 values for executing this example. A ListFiltering file (named ListFiltering.txt) is stored

in refdata directory of dummaydata directory. ListFiltering function is performed using the filtered

result files shown in an example in figure 15 and ListFiltering.txt as a ListFiltering file. You can get

two types of result files such as a list or unlist files per a filtered result file. Each line of a filtered

result file with the value belonging to the value in a ListFiltering file is stored to as list file. Each line

of a filtered result file without the value belonging to the value in a ListFiltering file is stored as a

unlist file.

You can execute an example in figure 16 using the following command.

 Using one file as input

Using this command, one file (named example_input.txt in dummydata directory) is used as
input using “-input” option. “-FilteringRule_File” and “FieldDefinition_File” options set the same
value as an example in figure 15 (see page 23). In addition, two options associated with
ListFiltering function such as "-ListFiltering_field" and "-ListFiltering_file" options are set. The "-
ListFiltering_field" option is set by entering a field name that is referenced when performing
ListFiltering function in the filtered result files. The "-ListFiltering_file" option is set by entering a
file path of ListFiltering.txt. The result directory is set as output location for storing the result files.
All filtered result files are stored in filtering directory of output location as below.

 26 / 31

- Final result file (from one input file named example_input.txt)

 Using multiple files as input

We will only explain “-input” option and the final result files. You can get the description of the
remaining options in above command. Using this command, the multiple files belonging to
example_dir1, example_dir2 in dummydata directory are used as input using “-input” option.
The example_dir1 and example_dir2 directories have six files as below.

All filtered result files are stored in filtering directory of output location as below.

- Final result file (from six input files in two directories)

An execution example using format category

GVAF can export output file with customized file format using the format module. The format module

is performed by setting the options in the format category and a format file. You can get a detail of

a Format file (see page 15). Using the format module, you can apply the various situations. For

example, you can extract the specific fields in annotated result file or input files and change the

order of the printing fields and modify the field name of the printing fields.

We explain the usage of the options in format category using an example as below.

 27 / 31

Figure 17. The example of customized output file creation using a format file.

Figure 17 shows the process of generating the result files with customized file format using the

format module. The customized file format is defined using a format file. You can find a detail of a

format file (see page 15). We created a format file (named Format.txt) containing output format of

the 5 fields in the input files for executing this example. This file is stored in refdata directory of the

dummydata directory. The input files consist of 57 fields such as "Chr, Start, End, Func.refGene,

Gene.refGene, etc.". The format module extracts the 5 fields (i.e., Chr, Start, End, Func.refGene,

Gene.refGene defined in a format file) form the input files and prints extracted fields in order defined

in a format file. As a result, the field named “Gene.refGene” is changed from “Gene.refGene” to

“Gene”. You can get the final result files consisting of Chr,Start,End,Ref,Alt,Gene,Fun.refGene”.

You can execute an example in figure 17 using the following command.

 Using one file as input

Using this command, one file (named example_input.txt in dummydata directory) is used as
input using “-input” option. The “-format_file” option in the format category is set by entering the
file path (Format.txt) as a format file. The result directory is set as output location for storing the
result files. A final result file is stored in format directory of output location as below.

- Final result file (from one input file named example_input.txt)

Formatted_example_input.txt

 Using multiple files as input

 28 / 31

We will only mention the description of “-input” option and the final result files. You can find the
description of the remaining options in above command. Using this command, the multiple files
belonging to example_dir1, example_dir2 in dummydata directory are used as input using “-
input” option. The example_dir1 and example_dir2 directories have six files as below.

The final result files are stored in format directory of output location as below.

- Final result file (from six input files in two directories)

Formatted_example_dir1_1.txt, Formatted_example_dir2_1.txt,
Formatted_example_dir1_2.txt, Formatted_example_dir2_2.txt
Formatted_example_dir1_3.txt, Formatted_example_dir2_3.txt

An execution example using several categories

GVAF can execute the multiple modules at once using the options in several categories. Each

module is executed in order according to the predefined priority. At this time, all modules except the

initially executed module use the result files of the previously executed module as the input files.

The result files of each module are stored in individual directory of output directory. You can get a

detailed explanation of the function and usage of each module in some example (see page 16-26).

We prepared an example of using three modules together.

 29 / 31

Figure 18. An example using the preprocessing and filtering and format modules.

Figure 18 shows the process of executing the preprocessing and filtering and format modules

together. GVAF produces the execution flow in order of the preprocessing and filtering and format

modules based on the predefined priority. The input file in this example is the Annovar-like output

format, and the input file is used as input for the preprocessing module. The preprocessing module

creates the result file by converting the VCF derived genotype data related fields in the input file

into the user-friendly genotype fields. The result file of the preprocessing module is used as input

 30 / 31

for the filtering module. The filtering module applies three filtering rules (i.e., base, chr1,

set_chr1_base) in FR2.txt to the result file of the preprocessing module to generate the result file,

and result file of the filtering module is used as input for the format module. The field information

referenced in the filtering rules of FR2.txt is necessarily stored in FD.txt. However, the fields

including the user-friendly genotype fields such as “het/hom, totalread, refread, altread,

genotypequality” can be defined in the filtering rules even if they are not defined in FD.txt. For

example, the “totalread” field is applied by the filtering rule with base alias and this field information

is not defined in FD.txt. The format module exports 6 fields from the result file of the filtering module

by referring Format2.txt and creates the result files consisting of exported fields.

You can execute an example in figure 17 using the following command.

 Command for executing an example in figure 18

Using this command, one file (named example_input.txt in dummydata directory) as input using
“-input” option. The five options in preprocessing, filtering, format categories are set for
executing several modules. Two options in preprocessing category such as "-genotype_field"
and "-genotype_format_field" are set for executing the preprocessing module. The "-
genotype_field" option is set by entering the field name (i.e., extra5) of input file including
genotype-related data and the "-genotype_format_field" option is set by entering the field name
(i.e., extra5) of input file including genotype-related data format. The two options in filtering
category such as “-FilteringRule_File” and “–FieldDefinition_File” are set for executing the
filtering module. The “-FilteringRule_File” option is set by entering the file path of FR2.txt as a
FR file. The FieldDefinition_File” option is set by entering he file path of FD.txt as a FD file. One
option in format category such as “-format_file” option is set for executing the format module.
The “-format_file” option in the format category is set by entering the file path of Format2.txt as
a format file. The result directory is set as output location for storing the result files using “-
outputdir” option. All result files of each module are stored in individual directory of output
directory as below.

You can find the final result files in format directory of the output location.

- The result files

 31 / 31

gvaf_creation_annotation_file

The gvaf_creation_annotation_file tool is used to generate an annotation file.

Synopsis

gvaf_creation_annotation_file -input <file path> -outdir <directory path> -method <c/r> -field
<field name> [-headertag STRING]

Options

These options are used to generate an annotation file that is no duplication in annotated field
via the deduplication step.

-input <file path>

This option is used to specify input files.

-outdir <directory path>

This option is used to specify the output location.

-field <field name>

This option is used to specify field name for creating annotated field consisting of no duplicate
values.

-method <c/r>

The option is used to specify deduplication method. GVAF currently provides two deduplication
methods as described below.

- combine (c): combine duplicated columns into one.

- remove (r): remove duplicated columns.

- headertag <String>

This option appends headertag into all field names in a file.

Example

An example for generating an annotation file using the combine method.

e.g.,) gvaf_creation_annotation_file -input ~/workspace/GVAF/refdata/OMIM20160401.txt -
outdir . -method c -headertag "OMIM." -field "Gene";

➢ The result using headertag “OMIM.”:

<header of input> <header of output>
“Gene, disease name, alternative titles” -> “OMIM.Gene, OMIM.disease name,
OMIM.alternative titles”.

